Glycoconjugates mark a transient barrier to neural crest migration in the chicken embryo.

نویسندگان

  • R A Oakley
  • C J Lasky
  • C A Erickson
  • K W Tosney
چکیده

We report that two molecular markers correlate with a transient inhibition of neural crest cell entry into the dorsolateral path between the ectoderm and the somite in the avian embryo. During the period when neural crest cells are excluded from the dorsolateral path, both peanut agglutinin lectin (PNA)-binding activity and chondroitin-6-sulfate (C6S) immunoreactivity are expressed within this path. Both markers decline as neural crest cells enter. Moreover, both markers are absent after an experimental manipulation that accelerates neural crest entry into this path. Specifically, dermamyotome deletions abolish expression of both markers and allow neural crest cells to enter the dorsolateral path precociously. After partial deletions, dermatome remnants remain. These remnants retain PNA and C6S labeling and impede migration locally. Local glycoconjugate expression thus correlates directly with avoidance responses. Since both PNA-binding activity and C6S expression also typify inhibitory somitic tissues, molecules indicated by these markers (or co-regulated molecules) are likely to inhibit both neural crest and axon advance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of the neural crest cell fate by N-myc: promotion of ventral migration and neuronal differentiation.

During neural crest development in avian embryos, transcription factor N-myc is initially expressed in the entire cell population. The expression is then turned off in the period following colonization in ganglion and nerve cord areas except for the cells undergoing neuronal differentiation. This was also recapitulated in the culture of Japanese quail neural crest, and the cells expressing N-my...

متن کامل

Dev107656 2057..2063

In amniotes, it is widely accepted that WNTs secreted by the dorsal neural tube form a concentration gradient that regulates early somite patterning and myotome organization. Here we demonstrate in the chicken embryo that WNT protein is not secreted to act at a distance, but rather loaded onto migrating neural crest cells that deliver it to somites. Inhibiting neural crest migration or ablating...

متن کامل

Title Chicken HOXA3 Gene: Its Expression Pattern and Role in Branchial Nerve Precursor Cell Migration

In vertebrates, the proximal and distal sensory ganglia of the branchial nerves are derived from neural crest cells (NCCs) and placodes, respectively. We previously reported that in Hoxa3 knockout mouse embryos, NCCs and placode-derived cells of the glossopharyngeal nerve were defective in their migration. In this report, to determine the cell-type origin for this Hoxa3 knockout phenotype, we b...

متن کامل

Chicken HOXA3 Gene: Its Expression Pattern and Role in Branchial Nerve Precursor Cell Migration

In vertebrates, the proximal and distal sensory ganglia of the branchial nerves are derived from neural crest cells (NCCs) and placodes, respectively. We previously reported that in Hoxa3 knockout mouse embryos, NCCs and placode-derived cells of the glossopharyngeal nerve were defective in their migration. In this report, to determine the cell-type origin for this Hoxa3 knockout phenotype, we b...

متن کامل

Cell surface beta 1,4-galactosyltransferase functions during neural crest cell migration and neurulation in vivo

Mesenchymal cell migration and neurite outgrowth are mediated in part by binding of cell surface beta 1,4-galactosyltransferase (GalTase) to N-linked oligosaccharides within the E8 domain of laminin. In this study, we determined whether cell surface GalTase functions during neural crest cell migration and neural development in vivo using antibodies raised against affinity-purified chicken serum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 120 1  شماره 

صفحات  -

تاریخ انتشار 1994